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Abstract: The present work focuses the interest of study in a naturally emerged and intense 

online community, this of ScratchR “programmers by choice” community, that actually 

practice collaborative learning in an authentic way. Our interest is not to support collaborative 
learning process, but to foster collaboration opportunities. We propose a personalized 

recommendation system based on a “collaborative filtering” technique aiming at inciting 

collaboration and increasing the frequency of Scratch projects remixing, in order to foster 

collaborative learning. In this paper the proposed collaboration fostering mechanism is outlined 

with the assistance of a test data set. The significance of the proposal is discussed while the 

future work is described. 

Introduction 
Computer programming is generally considered an important competence not only because of its economic 

significance but also of its value as a learning environment. More recently computer programming is referred to 

as literacy for modern society which enables people to be active contributors to interactive digital content on the 

web2.0 (Monroy-Hernandez, 2007). Despite its significance, computer programming learning is recognized as a 

difficult task for students (Wiedenbeck, 2005). In order to lower the barriers in the development of computer 

programming skills, several approaches have been proposed, such as: educational programming languages (e.g. 

Logo, Scratch, Alice) to make the programming more attractive (Guzdial, 2004), and the study of contexts for 

informal learning of computer programming (Maloney et al, 2008). In this paper we focus on the Scratch 

educational programming environment and especially on the ScratchR online community where several 

individuals, hobbyists in their majority, are learning computer programming collaboratively for entertainment 

and in an informal context. The capability of ScratchR community for Scratch projects remixing, constitutes a 
central mechanism of collaborative learning. In this paper we propose a recommendation system based on a 

“collaborative filtering technique” aiming at inciting collaboration according to the members' preferences and 

increasing the frequency of Scratch projects remixing, in order to foster collaborative learning within the 

ScratchR community. In the followings the Scratch environment and ScratchR community are described first in 

order to understand the context of the proposed collaboration fostering application then the proposed 

recommendation mechanism is outlined with the assistance of a test data set. Finally, in the discussion section 

all of the above is summarized, while its significance and future work are described.  

About Scratch and ScratchR community 
Scratch (MIT Media Lab, 2008) is an educational programming environment developed by the Scratch project 

from MIT Media Lab.  Scratch encompasses a graphical programming language which makes programming 

more accessible to children (ages 8 and up), teens and other novices to computer programming for the 

developed of media rich projects.  The ScratchR (Monroy-Hernandez, 2007) is a web site (scratch.mit.edu) 

where Scratch users can share their projects. ScratchR facilitates collaborative learning of computer 

programming through (Monroy-Hernández & Resnick, 2008):   (a) Inspiration: browse, download and reuse 

project elements;  (b) Feedback from and to the community: the other users serve as an audience with 

varying expertise levels giving opportunities for peer teaching and scaffolding; (c) Creative appropriation 

(remixing): the modification, extension, correction of other’s projects. Projects’ remixing is considered by the 

authors as a major observable expression of collaboration among the Scratch community members. The current 
extent of collaborative learning through creative appropriation in ScratchR is clarified in the following quote: 

“The Scratch website serves as a repository of code and ideas that can be creatively appropriated to spawn new 

ideas and new projects. … Fifteen percent of all of the 23,294 projects shared (as of August 14, 2007) where 

remixes of other projects. Of those, the types of changes made ranged from simple changes to image and sounds 

to modification of the actual programming code.” (Monroy-Hernández & Resnick, 2008). It is reasonable to 

assume that devising a mechanism to increase remixing in ScratchR community will probably increase 

collaboration and collaborative learning.  

Proposing a collaborative filter for ScratchR remixers recommendations 
Goldberg et al, 1992 used the term “collaborative filtering” for the first time in a system called “Tapestry”. 

“Collaborative filtering” refers to a set of techniques that exploit social annotations and interaction data from the 



members of a community to facilitate searching in a large set of multimedia objects. One popular example is 

that of tags that users attach to objects, thus formulating flat categorization systems known as “folksonomies” 

which are depicted by “tag-clouds”.  ScratchR community does not have any personalised recommendations 

system yet. By using collaborative filtering in ScratchR, it is possible to build a recommendations mechanism 

that after taking into account projects that have been remixed by other “similar” users, would propose projects 

for remixing to each member personally.  
We are aiming to recommend projects for remix from the more frequently remixed projects. ScratchR offers the 

list of top remixed projects along with the list of remixers’ psedo-names. We use this list to collect the 

preferences of the users to projects for remix. Usually the first step of a collaborative filtering algorithm is to 

estimate the similarity of each user from a large set, to a specific user.  In our case we need to estimate which 

users prefer to remix the same kind of projects and then suggest to a specific member a list of projects that 

he/she has not yet remixed or even studied and has been remixed by similar users.  

As a first step a way to represent remix preferences is needed. Preferences can be represented by an Array: 

RP  {0,1}nxm , where RPij =  
1 if project(j) has been remixed by user(i)
0 otherwise

  , and n=number of users while 

m=number of projects.  In real applications it is necessary to limit large data sets for example, in our example 

data set the 10 most remixed projects which involve 1960 members will be used. For example the RP for the top 

seven remixed projects of ScratchR on 25/10/2008 and for five of the members, is in Table 1. The raw data has 

been collected manually from ScratchR. Using this small set of data it is possible to see that the project “3 

Trampoline” could be recommended to users Fetsch, kaotheroogoncreator, and mtaylor etc. Of course these 

recommendations are not so obvious when using the whole set of data because it is not easy to locate similar 

members. So we need a way to estimate similarity of members. 

Table 1. Remix Preferences array subset for test data. 
User  1 PacMan 2 Pong 3 FishChomp 3 Trampoline 4 MarbleRacer 6 Doodle Doodle 

Planetbravo 1 1 1 1 0 1 1 

Fetsch 1 1 1 0 1 1 0 

kaotheroogoncreator 1 1 1 0 1 1 1 

Mtaylor 1 1 1 0 1 1 1 

olly144 1 1 1 1 1 1 1 

The second stage in the process is to determine the degree of members’ similarity in terms of projects they 

prefer to remix. In other words we need to compare the set of remixed projects for each member to the remixed 

projects set of every other member.  In order to do this we need to choose a similarity metric (Segaran, 2007).  

In our case Jaccard coefficient is used in which joint absences are excluded from consideration. Jaccard 

coefficient gives equal weight to matches and nonmatches. By computing this similarity measure for each 

possible pair of users we obtain a square Similarity nxn Array: SA, where SAij =
 𝑅𝑃𝑖𝑘 𝑅𝑃𝑗𝑘
𝑚
𝑘=1

 𝑅𝑃𝑖𝑘  ⨁ 𝑅𝑃𝑗𝑘
𝑚
𝑘=1

, 

( 𝑅𝑃𝑖𝑘  ⨁ 𝑅𝑃𝑗𝑘
𝑚
𝑘=1 ≠0, since we consider member with at least one remix). From the computation formula of 

Jaccard coefficient it is obvious that SAij  [0,1], furthermore SAij=0 means that user(i) and user (j) have not 
remixed any common projects while SAij=1 means that user(i) and user(j) have remixed exactly the same 

projects. For the test data set mentioned above we can see a subset of SA in Table 2. To produce 

recommendations for a specific member we order the list of other users in decreasing order of similarity. Then 

we propose projects from the remixes of the more (but not absolutely, SAij=1) similar users which has not been 

remixed by the specific member. For example to user __sakura__ we can propose projects from the remixes of 

users 100seconds, and/or 101eisoJ, and/or 110ronaldo. 

Table 2. Excerpt from the similarity matrix (SA) for the ScratchR test data set 

  __sakura__ 02sergi02 06howardr 100seconds 101eisoJ 110ronaldo 

__sakura__ 1 0,000 0,500 0,500 0,500 0,500 

02sergi02 0,000 1 0,000 0,000 0,000 0,000 

06howardr 0,500 0,000 1 1,000 0,000 0,000 

100seconds 0,500 0,000 1,000 1 0,000 0,000 

101eisoJ 0,500 0,000 0,000 0,000 1 1,000 

110ronaldo 0,500 0,000 0,000 0,000 1,000 1 

An example of the potential 
In order to have a practical example of the potential of the proposed technique we are going to apply 

multidimensional scaling on the Similarity Array. This is going to give us a graphical summary of the complex 

relations between members. It is interesting to see an example of the recommendations produced by the above 

technique and to estimate their quality. An excerpt of the two dimensional diagram from the Multidimensional 

Scaling to the Similarity Array appears in figure 1. From the diagram we can see groups of similar members that 

remix rather the same group of projects. Members in the center remix the most remixed group of projects.  



 

 
Figure 2. Excerpt from a marginal part of MDS diagram of 

SA 
Figure 1. Excerpt from the central part of MDS diagram of SA 

When we want to make recommendations for one specific member we have to consider the nearest 

neighbors of him/her. For example let’s focus to user jdogscreations who (according to the RP) has remixed the 

following projects: “1 PacMan”, “2 Pong”, “4 MarbleRacer”, “Doodle” and “Marble Racer starter”. User 

hockeystarcg is a close neighbor of jfogscrations and has remixed the projects: “2 Pong”, “4 MarbleRacer”, “6 

Doodle”, and “Marble” “Racer starter”. So the system could suggest to jdogscreations to consider projects “1 
PacMan” and “6 Doodle” for remix. Let’s take another random sample from the marginal area of the diagram 

(Figure 2). In the margins users tend to be more exceptional and not so similar. Following the same procedure 

the system could suggest to user agentbrumperdinkles who has remixed the projects: “1 PacMan” and “3 

Trampoline” the project “Perfect Sidescrolling Engine v1.0”. This is quite an interesting recommendation 

because the suggested project is a model project that shows how to implement side scrolling in Scratch; this 

could empower the user to build more complex programs. Even these small data set shows that it is possible to 

build one recommendation mechanism for the ScratchR community that could foster the collaborative learning 

of programming.  

Discussion 
Computer programming is an educational interesting competence for economical and general learning reasons. 

Scratch is an educational programming environment which is quite popular and successful. The system provides 

an easy introduction to computer programming. In addition ScratchR provides user of Scratch with an online 

community where they can publish, share, comment, and creatively appropriate (remix) projects. In this paper 

we proposed and described the development of one collaboration fostering mechanism, based on the 

collaborative filtering technique for the production of personalized suggestions lists with projects recommended 

for remix. Remix of a project is considered a significant collaboration event in scratch and in every 

programming environment. The proposed mechanism, increases the frequency of projects remixing and 

constitutes a collaboration fostering mechanism.  There are many other possibilities to apply interaction analysis 
(Fesakis, Petrou, & Dimitracopoulou, 2004; Dimitracopoulou, 2008) techniques in ScratchR. For example, it is 

possible to make recommendations of members for collaboration, projects for examination, galleries to 

participate etc. This work is going to be continued after the initial exploration of these possibilities in ScratchR 

and other communities, with the provision of the personalized recommendation system, its evaluation by the 

community members and the study of its effects 
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