
Dimitracopoulou A., (2001). Design issues in Learning Environments for young students: The importance and the limits of
general usability criteria. In Avouris & Fakotakis (Eds). Advances in Human-Computer Interaction, Proceedings of PC HCI
2001 Conference on Human-Computer Interaction, Typorama Editions, pp. 115-120

Design issues in Learning Environments for young
students: The importance and the limits of general

usability criteria

Angelique Dimitracopoulou
Learning Technology and Educational Engineering Laboratory,

University of the Aegean
1, Av. Democratias, GR 85100, Rhodes, Greece

adimitr@rhodes.aegean.gr

SUMMARY
This paper initially examines some often overlooked
factors (such as users and context) that are related to the
usability of educational software. Then, the concept of
usability is examined, trying to consider its real meaning
in educational software, related more on its features
supporting learning. Additionally, it is argued that user-
centred or even learner-centred design approach must be
actually reconsidered, taken into account recent, more
social oriented, considerations. Finally, interface design
and usability evaluation methods during the whole
design-development lifecycle process are discussed.

KEYWORDS: Technology based learning environments,
educational software, young students, human-computer
interaction, interface, usability, design approaches

INTRODUCTION
The main purpose of technology-based educational
environments is users learning. These environments do
not just offer tools that facilitate task execution, as in the
case of many other software environments. Educational
software besides permitting the students to execute their
learning-related tasks in an easy way, should also allow
learning during such activities and support the
underlying learning process.

The most important part of the educational software
system is the user’s interface, since it considerably
affects eventual learning. Even when the design of the
interface is inspired by scientific knowledge or
theoretical frameworks that are related to learning, the
transfer of such theoretical concepts to software design
specifications is not a straightforward exercise. It entails
a lot more than just representing in a computer program
the original concepts or learning theories that, for
instance, motivated the development of an innovative
learning environment. A unique feature of any design
problem is that there is not a single “optimal solution”
since the alternatives are always many. Design is an
interactive activity, which involves multiple actors.
Strong interaction occurs between theory and practice,
constraints and trade-offs, designers and their materials,
designing team and users or learners. Design requires a
balancing act between factors that often work against

each other, making the design of educational software
interface a particularly complex endeavour.

Usability, a precious and central concept of Human
Computer Interaction (HCI) field, is a self-evident
requirement for all kinds of software. But, given that the
purpose of an educational software is not just a task’s
performance but mainly the promotion of learning, the
following paradox may appear: there are often cases
where the seamless fluency of use is not conduced to
deep learning, but merely restrains it [8].
Researchers from HCI field have already slightly
explored the convergencies between general usability
evaluation criteria and their applicability and sufficiency
in the specific category of educational software. Squires
& Preece [10] as well as Kordaki & Avouris [6], point
out a list of usability evaluation heuristics lying with
learning quality requirements. Mayes and Fowler [8]
also discuss some general design issues related to
usability in three general kinds of educational software.

This paper discusses issues related to a set of basic
questions concerning usability of educational software
addressed to students of primary and secondary
education:

 To what extent, do the designers of technology-based
learning environments and in particular of
educational software take into account the context of
real school use, and how is usability concept mainly
considered?

 What are the specificities of educational software and
what really is the meaning of educational software’s
usability?

 What are the current tendencies and trends in the
designing process in order to assure usability?

SOME TRIVIAL CASES WHERE USABILITY IS NOT
FULFILLED
It is well known that software usability is related with
the performing activity and tasks during interaction, but
also with the nature of the users and the context of use.
According to ISO 9241-11 forthcoming standard,
usability is not an intrinsic property, and it is not
possible to be examined outside the particular context of
use. In the case of educational software, let us firstly

Dimitracopoulou A., (2001). Design issues in Learning Environments for young students: The importance and the limits of
general usability criteria. In Avouris & Fakotakis (Eds). Advances in Human-Computer Interaction, Proceedings of PC HCI
2001 Conference on Human-Computer Interaction, Typorama Editions, pp. 115-120

consider the ‘user’. Most of the educational software is
produced with the intention not to be used individually
by one student, but in the context of the school
classroom. In spite of that, the interaction that is
considered as dominant is the one that takes place
between a single student and the software (see figure 1).

Figure 1. Dominant considered Interaction

Nevertheless, the user of educational software in the
school does not have a unique general profile. In a real
school classroom, an eventual user is also, besides the
student, the teacher of the class. Very few educational
software products recognize the teacher as a potential
user. And in most of these cases, the only possibility
they provide the teacher with, is the arrangement of the
educational material. By ignoring the teacher’s role in
class, or by avoiding to take them into account in an
explicit way, designers of educational software often fail
to provide the teachers with the specific components and
tools that should help them in their complex task. For
instance, the tasks that the teacher needs support at are to
be able to pursue, know and interpret the students’
interaction and/or cognitive paths in exploratory
environments, and thus to be able to understand their
conceptual or procedural difficulties. Appropriate tools
could be designed in order to analyze students’ actions
and provide teachers with elaborated and structured
information that could support them in significant
interventions. This direction that actually seems to
mainly concern the designers of collaborative distance
learning systems, is also essential in other software
categories, in order to allow teachers to perform
effectively and efficiently.

 Let us now examine the educational software context of
use (see Figure 2), by concentrating on just some of its
dimensions and setting aside others, broader ones, like
the social and organisational context. Most educational
software is supposed to have a single user during
interaction. Nevertheless, over the world, in real school
contexts and in a very large proportion of school classes,
the number of the computers that are being employed is
approximately half the number of the whole class
population. What this means is that not one single user
but merely two or in some cases three (Sn in Figure 2)
work simultaneously on the same computer with the
same software. In just a few cases does educational
software producers take this situation into account. There
are many possible ways to address this problem: a) by
recognising two simultaneous users: this case is being
applied in some problem solving-like games, where the
different single users have different roles; b) by offering
more than one external devices (e.g. two mice), a case

which some researchers have already tried to experiment
with, by having young children [2] as their subjects.

Context
of Use

Student

 T1

 S2

 T2

 E Sn

 S1

Educational
Software

Teacher

Tools

Educational
Software

Student

Figure 2. Interactions and Factors of the Context of use

Another factor that overlooks the context of use in real
school settings is the existence of other tools and
educational software (‘Esn’ in Figure 2) which are being
used by the students in parallel. Important and
unjustifiable inconsistencies with the currently used
software may affect the usability, the utility as well as
the learnability of a newly designed educational
software.

The above dimensions even if they are usually taken into
account in commercial software for adults, are often
ignored in the case of the educational software.

EXPLORING THE MEANING OF USABILITY IN
EDUCATIONAL SOFTWARE: FROM ‘USABLE’ TO
‘MEANINGFUL’
Many different categories of educational software have
been developed during at least the last twenty years. The
most distinct categories currently used in primary and
secondary education are: simulation and modelling
systems, educational robotics and media based
laboratory (MBL) systems, programmable systems (like
LOGO, Boxer), educational games, hypermedia
applications like encyclopaedias and content based
software, drill and practice and intelligent tutoring
systems. Additionally, during the last decade, internet
based applications allowed the development of
promising collaborative distance learning environments.
Most of the above systems present important differences
in the interface design as well as in the requirements that
relate with usability. As a consequence, different
environments create different opportunities for learning.
A given software can be distinguished from another,
because its interface is made out of different tools and
different entities or because theses entities act in a
different way. The special manner by which the user of
the software will be inhabited in the “world” of the
interface depends on the software itself, and determines
the kind of perception and the experiences that the user

Dimitracopoulou A., (2001). Design issues in Learning Environments for young students: The importance and the limits of
general usability criteria. In Avouris & Fakotakis (Eds). Advances in Human-Computer Interaction, Proceedings of PC HCI
2001 Conference on Human-Computer Interaction, Typorama Editions, pp. 115-120

will have in that world, and also the meaning that he will
construct. All the environments that have been
mentioned above present differences which also relate
with the age that the pupils have when they are first
addressed to them. The requirements for the interface
design are not the same when the software is addressed
to young pre-schoolers and when it is addressed to
secondary education students.

Usability is defined in ISO 9241-11 as “the extent to
which a product can be used by specified users to
achieve specified goals with effectiveness, efficiency
and satisfaction in a specified context of use”.
Usability in general application software is related to the
tasks that the user can execute with the specific software.
According to this meaning, an easy to use educational
software should allow the learner to perform the task
with effectiveness. In this case, let us consider for
instance, a modelling system, designed in such a way
that it undertakes most of the modelling activity,
presenting directly to the student the appropriate model.
In this case, the student will manage to resolve the task
(find the model of a situation) and will have
accomplished the task effectiveness. But, in this way, the
software basically prohibits the effectiveness of the
essential purpose of the activity, which was learning
through the modelling process itself.

Similarly, in an intelligent problem solving system, the
feedback of the system in the steps of the solution of the
problem that the students provide, could be directly
informative, by giving information on the right solution.
Gradually, the software will help the student to produce
the whole solution. The software helps the student to
execute the task with efficiency, consuming low level
resources not only in a software level but also in a
cognitive level, with regard to the learner. But, this
approach might also eliminate the possibilities that
students have to exploit and activate their own resources,
to be able to realise by themselves a reasoning approach
which might be inappropriate, and, finally, find the
appropriate solution on their own.

Finally, if HCI researchers or designers were addressed
to the student after the interaction with these two specific
educational software, it is very probable that they will
ascertain the student’s satisfaction from the use of the
system.

The difference in the case of educational software is that
the purpose is not just to perform a task, but to promote
learning during user activity. And learning is a process
of making meaning, not of knowledge transmission.
Humans interact with other humans and with artefacts in
the world and naturally and continuously attempt to
make sense out of those interactions. Making meaning
(resolving the dissonance between what we know for
sure and what we perceive or what we believe that others
know) results form puzzlement, perturbation,
expectation violations, curiosity, or cognitive
dissonance. This dissonance ensures that the learner has

acquired a respectable amount of knowledge. In other
words, an easy to use system might on one hand help the
student execute a task, while on the other hand might
restrain creation of meaning, understanding and deep
learning.

The educational software should first of all have as its
prime objective to make the learner think, reflect on his
actions, reflect on the whole activity. This assumption
does not set aside the activity and the task itself. There
are also opposite examples of educational software, in
which, for instance, in order to analyse a lot of
information about cognitive abilities of students learners,
they impose specific complex interactions during activity
that may really frustrate any user such as the learner. We
need well -balanced systems, both usable in task and not
restraining in learning, assuring meaningful interactions.

The goal of user-centred software design is to make
computers easier to use, thus allowing the user to focus
on the use of technology in order to perform various
tasks. The goal of learner-centred designers is to create
software that ‘makes people more effective learners’ and
also to design interfaces that will make them want to
learn and know how to learn, beyond the computer task
at hand. Recent findings in education and cognitive
psychology point out that learning environments should:

 Support the expression of learners by pre-existing
knowledge structures and, at the same time, support
their eventual evolution during interaction period
(that leads to a need of multiple expression modes or
adaptable interfaces) [14].

 Support thinking and reflection, that could imply that
the software should be restricted, for instance, in
providing an appropriate immediate feedback [7],
which is considered one of the main characteristics of
usable software.

 Support meta-cognition: the development of meta-
cognitive ability is an important and crucial
parameter in the learning process [13]. This
implicates that in exploratory environments
(simulation, modelling, programmable systems) or in
complex collaborative ones, supplementary
components and tools must be provided in order to
support metacognition. This principle, may lead to
the inclusion of a structured notebook (in order for
students to write down their thoughts during the
activity, in an organised and easily re-accessible
way) or to offer various visualisations of the ‘history
of interaction”, that give elaborated information on
the significant events.

Consequently, in the case of educational software, its
usability is not related directly with the efficiency and
effectiveness of the task execution, but with the
effectiveness and efficiency of learning that should occur
during this activity. So, usability is merely related with
the extent to which an educational software supports
expression, thinking, reflection and metacognitive

Dimitracopoulou A., (2001). Design issues in Learning Environments for young students: The importance and the limits of
general usability criteria. In Avouris & Fakotakis (Eds). Advances in Human-Computer Interaction, Proceedings of PC HCI
2001 Conference on Human-Computer Interaction, Typorama Editions, pp. 115-120

activity, in an efficient and effective way; the extent in
which it allows and supports learning during interaction
and activity.

DESIGN PROCESS AND METHODOLOGICAL
TRENDS
How can we design learning environments and how can
we assure their usability? In this section we will discuss
methodological trends related to the design process and
usability requirement during the whole development
lifecycle.

Firstly, we need to examine what differentiates an adult-
user from a young student. The first important difference
is that designers could not extract information that is
useful on requirements directly from young learners.
Learners either students or young children have not yet
sufficiently developed metacognitive abilities on what
they really need in order to perform tasks and achieve
learning purposes. A second difference is that the goals
of the interaction and the activity itself are not specified
by students themselves. The objectives are usually
specified by teachers, educators, or even researchers.

Given that the students themselves cannot give direct
information on their needs, how can we identify goals
and specify initial usability requirements?
In order to start designing, one approach could be to
follow ‘instructional design process’ which puts
emphasis on the careful, a priori engineering, of the
teaching learning process, the articulation of explicit
learning objectives defined by official curricula paired
with systematic and empirically verifiable approaches to
analysing, designing, developing implementing and
evaluating instruction. This approach is often applied in
conventional educational software based on content
presentation and simple exercises or questions on
specific parts of the content. These kinds of software,
which often belong to the ‘drill and practice’ category,
usually need simple interfaces. Instructional approaches
of educational software design that develops
conventional systems, have much less questions to
answer during design process.
On the contrary, the innovative exploratory kind of
learning environments are usually based on ‘Grounded
design approaches’. These are ‘systematic
implementations of processes and procedures that are
rooted in established theory and research in human
learning’ [4]. Grounded approaches emphasise the
deliberate alignment of core foundations and
assumptions, and the linking of methods and approaches
in ways that are consistent with their corresponding
epistemological perspectives. According to this
approach, the central design principles are derived from
experimental research issues and/or from theoretical
assumptions and considerations that stem mainly from
the field of education (e.g. science education,
mathematics education, etc.) and the field of cognitive
psychology. These principles influence the initial
specified requirements that may lead to the composition

of a set of tools and components. The specific graphical
user interface, the design of buttons, labels, and other
commonly used interface elements as well as the synergy
between different tools, often remains crucial. When
they can not be based on existing previous experimental
research in the field of learning environments design,
then, they may ask for considerable design effort and
experimentations with learners aiming to make
comparisons among two or more alternative design
approaches of specific tools interface [12].
There is a gap between requirements and design: the
transformation between a represented world
(requirements) and a representing world (interface). This
transformation is mediated by conceptual models and
metaphors, and also by a ‘grammar’ of the representing
world – the syntax, style, and conventions of the specific
implementation environment. The design of innovative
learning environments is always a complex endeavour
by itself, and especially in order to assure their usability.
Even if the necessity to produce usable systems is
actually acknowledged for every kind of software, the
remaining problem is that very often in practice,
usability aspects are usually regarded very late (if at all)
in software development. In educational software the
situation may be more burdened.
In the case of innovative software, it is not rare to see
un-usable systems in task–oriented meaning, due, for
instance, to an over-demand by the system of elements
during interaction in order to analyse the actions of
learners and offer adapted feedback and advice, or to an
over–offer of choices and tools. These cases, that often
restrain system usability, lead to the frustration of
learners. Approaches that could help towards this
direction are participatory design and a well established
experimental design agenda, studying users performing
tasks.
Many experimentation approaches may be applied
during development: clinical evaluations in the
laboratory with single students and/or group of students,
evaluations in a simulated or in a real context of use,
employing research tools like observation analysis based
on various data (video, sound, observation protocols,
logfiles, screen interactions captures), multi-focused
analysis, think-aloud protocols, interviews,
questionnaires, etc., [1], [3].
It is to be noted that although experimental evaluations
may be used, in the middle period of design development
life-cycle, their expense will restrict them to a very few
particularly significant decisions out of the very many
that any design includes. The frequent use of informal
in-depth studies on early and elaborated prototypes
during the development of a system is often crucial in
order to reveal problems with the environment in use but
also to outline general issues applicable across
educational software. Researchers advocate officially the
usefulness of informal-exploratory techniques [15],
against typical formal methods that fit with the scientific
paradigm of objectivity and reproducibility but are very

Dimitracopoulou A., (2001). Design issues in Learning Environments for young students: The importance and the limits of
general usability criteria. In Avouris & Fakotakis (Eds). Advances in Human-Computer Interaction, Proceedings of PC HCI
2001 Conference on Human-Computer Interaction, Typorama Editions, pp. 115-120

consuming in time and effort, and they are not so
worthwhile in early usability evaluations.
In general, researchers seem to have preferences in the
selection of a specific methodology due to a multitude of
reasons [3]. These preferences are due to the specific
category of educational software, the underlying
theoretical design framework, or even may be due to the
dominant academic background of researchers or simply
to financial and time constraints. Traditional
instructional design approaches, producing simple
multimedia, content-based educational software are
compatible with quantitative results analysis in an
important number of pupils. On the contrary, student-
centred design approaches, influenced by recent theories
of learning and cognition, such as Activity Theory and
Distributed Cognition, promote qualitative approaches
and long term evaluations in the field of use.

Let us examine now, what happens after the basic
development life-cycle. Most systems and products are
modified and improved in a number of releases over a
number of years. Web sites are being updated and
modified continuously. However, most efforts at
working with usability matters stop after the initial
development process. What do we do after delivery?
In some cases, external validation approaches,
accomplished by usability experts and/or teachers are
applied, like the heuristic usability evaluation proposed
by Nielsen [9]. In the cases of educational software has
also made attempts to produce appropriate heuristics for
usability evaluation [6], [10]. But this kind of method
cannot but have a little impact in design and re-design
lifecycle, since, by nature, it has a post-development
external validation status.
Usability related work is important to be continued after
first full development and during ‘releases’ period. Long
term research, allows to examine the real context of use
better, as well as to investigate usability factors for
experimented users; an aspect almost completely ignored
in educational software.
In those cases, the application of ethnographic
experimental methods are particularly suitable.
Ethnographic methods are especially concerned with the
observation of behaviour in a natural setting, known as
ecological validity. In the context of educational
software, these approaches thus focus on the interactions
not just between the user and the system as they occur in
class, but also on the interactions between the single user
and the other users, the teacher(s), and other systems, the
computational, social, organisational context factors, etc.

CONCLUSIONS-DISCUSSION
The designers of educational software either they don’t
pay attention to usability requirements, or usually they
envisage this quality factor in one-dimensional view,
taking into account only the student–software interaction
during task performance and ignoring complex
interactions that usually occur in real school contexts.

 Usability is a central concept in User-Centred design
approach (UCD), in the engineering perspective. User-
centred design has surfaced as the primary design
approach to facilitate usable interactive systems, offering
a collection of tools and methods for planning, iterative
development and evaluation, while it fosters a tight
evaluation feedback loop to assure that the deficiencies
are identified and corrected at an early stage of the
development life-cycle. The corresponding approach in
the field of educational software is the so-called Learner-
Centred Design (LCD). Initially, LCD approach was
specified in order to be clearly differentiated from
instructional design approaches where the starting point
has not been the student-learner and their needs but the
objectives and the content specified in the official
curricula. Similarly, LCD educational software design
approach is based on experimentation with learners.
Even though it happens, and given that it is actually well
established (at least in the research field) we argue that
LCD named approach may actually lead to
misunderstanding and misconceptions, reinforcing the
tendencies to examine the usability in an entrenched
single learner –software interaction. The real school
context of educational use is multidimensional
considering the factors that we have to take into account
and the interactions that may occur.
Moreover, in the current states of the extended Internet
exploitation and in the view of the trends in the advances
and use of technology, it becomes evident that in order
to provide the required support for the design of the
broad range of computer supported mediated activities in
the emerging virtual spaces, UCD as well as LCD
approaches, as philosophies, should be extended to
provide more prescriptive design framework. In the
context of HCI researchers the need to refine and extend
existing techniques and tools of user centred approaches
with concepts from social sciences is started to be
recognised [5], [11]. These researchers claim the need to
provide a broader foundation for HCI design. By doing
research on potential design contributions rooted at
disciplines that focus on human communication in social
contexts they extend the analytical design approaches
with social constructs that are based on Activity theory,
language action theory, situated action models,
distributed cognition.

The interface design of educational software, and
especially in the case of the innovative one, is an
extremely complex approach. Usability engineering in
learning environments is a tremendous design problem
given that its real meaning goes beyond the usability on
task performance and has merely to do with the extent in
which a software allows and supports learning. Thus, the
general usability criteria and guidelines that may be
partially useful, remain limited. It should be stressed that
the usability evaluation of an educational software, more
than a simple validation exercise, should provide
information with significant interpretative value, and
should be applied not only during the whole

Dimitracopoulou A., (2001). Design issues in Learning Environments for young students: The importance and the limits of
general usability criteria. In Avouris & Fakotakis (Eds). Advances in Human-Computer Interaction, Proceedings of PC HCI
2001 Conference on Human-Computer Interaction, Typorama Editions, pp. 115-120

development lifecycle but also during the post
production period. In order to examine system usability
that fulfils learning purposes, a wide range of methods is
often needed to be applied in a complementary way:
successive informal (i.e. exploratory) and formal
evaluation methods in laboratory as well as in real
school context. The need of really multi-disciplinary
design teams (technological, HCI, usability engineers,
cognitive psychology scientists, science educators, etc)
are broadly evoked, but it is needed to be also fully
applied in educational software design. Additionally,
usability engineering research must focus on the
development of specific methods and tools of analysis
that could significantly help designers to produce usable
innovative educational software.

ACKNOWLEDGEMENTS
Financial support from the Network of Excellence on
Software Usability, funded by the Greek Secretariat of
Research and Technology is acknowledged. Special
thanks are due to the members of the network for fruitful
discussions.

BIBLIOGRAPHY
1. Avouris N. Introduction in Human-Computer

Interaction, Diavlos Pub. Athens (2000).

2. Abnett C, Stanton D., Neale H. & O’Malley C. The
effect of multiple devices on collaboration and
gender issues. Proc. of European Conference on
CSCL, Maastrict, The Netherlands, March 2001.

3. Dimitracopoulou A. Learning environments and
Usability: Appropriateness and complementarity of
evaluation methods, Proc. 8th Panhellenic
Conference on Informatics, Nicosia, November 2001.

4. Hannafin M.J., Hannafin K.M., Land S. & Oliver K.
Grounded practices in the design of learning systems.
Educational Technology Research and Development,
45 (3), 101-117. 1997.

5. Hollan J., Hutchins E., & Kirsh D. Distributed
Cognition: Toward a new foundation for Human-
Computer Interaction Research. ACM Transactions
on Computer-Human Interaction, Vol7, No2,2000,
pp. 174-196

6. Kordaki M. & Avouris N. (2000). Evaluation
methods and tools for open learning environments
Tools. In V. Komis (ed). Technologies of Information
and Communication in Education, Proceeding of 2nd
Panhellenic Conference, Patras, Greece.

7. Land S.M. & Hannafin M. Student-Centered
Learning Environments, D. Jonassen & S. Land
(Eds) Theoretical Foundations of Learning
Environments. LEA,1-25, 2000.

8. Mayes J.T. & Fowler C.J. Learning Technology and
Usability: A framework for understanding
courseware. Interacting with Computers 11, 485-497,
1999

9. Nielsen J. Usability Engineering, Academic Press,
London., (1993).

10. Squires D. & Preece J. Predicting quality in
educational software: Evaluating for learning,
usability and the synergy between them. Interacting
with Computers, 11, (1999).

11. Stefanides C, & Salvendry G. Toward an Information
Society for All : HCI challenges and R&D
recommendations. International Journal of Human-
Computer Interaction, Vol.11(1), 1999, pp. 1-28.

12. Suthers D., & Hundhausen D. Learning by
constructing collaborative representations: An
empirical comparison of three alternatives. Proc. of
European Conference on CSCL, Maastrict, The
Netherlands, March 2001.

13. Vosniadou S. From cognitive theory to educational
technology. In S. Vosniadou, E. De Corte, H. Mandl
(Eds.), Technology-Based Learning Environments:
Psychological and Educational Foundations, NATO
ASI Serie F : Computer and Systems Sciences, Vol.
137, pp.11-18. Springer Verlag, (1994).

14. White B. & Frederiksen R. Causal model
progressions as a foundation for Intelligent Learning
Environments, Report No 6686, BBN Inc., (1987).

15. Winne P. A Landscape of Issues in Evaluating
Adaptive Learning Systems. Journal of Artificial
Intelligence in Education, V.4., N2/, Special Issue on
Evaluation. pp. 309-332.

	Design issues in Learning Environments for young
	students: The importance and the limits of general
	usability criteria
	
	SUMMARY
	INTRODUCTION
	SOME TRIVIAL CASES WHERE USABILITY IS NOT FULFILLED
	EXPLORING THE MEANING OF USABILITY IN EDUCATIONAL SOFTWARE: FROM ‘USABLE’ TO ‘MEANINGFUL’
	DESIGN PROCESS AND METHODOLOGICAL TRENDS
	CONCLUSIONS-DISCUSSION
	ACKNOWLEDGEMENTS
	Financial support from the Network of Excellence on Software Usability, funded by the Greek Secretariat of Research and Technology is acknowledged. Special thanks are due to the members of the network for fruitful discussions.
	BIBLIOGRAPHY

